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Generative and Discriminative Models for Classification

 Model the separating criterion 𝑃𝑟(𝑌 |𝑋) directly

 Model the distribution of 𝑋 in each of the classes 𝑃𝑟(𝑋 |𝑌) separately, and then 

use Bayes theorem to flip things around and obtain 𝑃𝑟(𝑌 |𝑋)
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Support Vector Machines

 The support vector machine is a generalization of a simple and intuitive

classifier called the maximal margin classifier and support vector 

classifier

 Here we approach the two-class classification problem in a direct way:

 We try and find a plane that separates the classes in feature space

 If we cannot, we get creative in two ways:

 We soften what we mean by “separates”, and

 We enrich and enlarge the feature space so that separation is possible
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Why Support Vector Machine?

 For classification task we only need to know the hyperplane. Why bother a 

model?

 Support Vector Machine has the following advantages

 Still effective in cases where number of dimensions is greater than the number of samples

 Uses a subset of training points in the decision function (called support vectors), so it is 

also efficient in both execution time and memory

 Versatile: different Kernel functions can be specified for the decision function. Common 

kernels are provided, but it is also possible to specify custom kernels

X The disadvantage is that it does not directly provide probability estimates. In 

addition, if 𝑝 ≫ 𝑛, the regularization is crucial
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What is a Hyperplane?

 A hyperplane in 𝑝 dimensions is a flat affine subspace of dimension 𝑝 − 1
 In general the equation for a hyperplane has the form

𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝 = 0

 If 𝑝 = 2 dimensions a hyperplane is a line

 If 𝑝 = 3 dimensions a hyperplane is a plane

 If 𝛽0 = 0, the hyperplane goes through the origin, otherwise not

 The vector 𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑝) is called the normal vector — it points in a 

direction orthogonal to the surface of a hyperplane
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Hyperplane in 2 Dimensions
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Note the distance between point 𝑥0, 𝑦0

to line 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽0 = 0 is 
|𝛽1𝑥0+𝛽2𝑦0+𝛽0|

𝛽1
2+𝛽2

2

, where
𝛽1𝑥0+𝛽2𝑦0+𝛽0

𝛽1
2+𝛽2

2
is the scalar projection

https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
https://en.wikipedia.org/wiki/Scalar_projection


Separating Hyperplanes

 If 𝑓 𝑋 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝
 𝑓(𝑋) > 0 for points on one side of the hyperplane, and 𝑓(𝑋) < 0 for points on the other

 If we code the colored points as 𝑦𝑖 = +1 for blue, say, and 𝑦𝑖 = −1 for purple, 𝑓(𝑋) = 0

defines a separating hyperplane. Therefore, 𝑦𝑖 𝛽0 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑝𝑥𝑖𝑝 > 0 for all 𝑦𝑖, 

𝑖 = 1,… , 𝑛!

 𝑦𝑖(𝛽0 + 𝛽1𝑥1
∗ +⋯+ 𝛽𝑝𝑥𝑝

∗) represents the confidence of our assignment

7



1. Maximal Margin Classifier

 Among all separating hyperplanes, find the one that 

makes the biggest margin between the two classes

 The minimal distance from the training observations to the 

hyperplane is known as the margin

 We try to choose the maximal margin hyperplane 

 Classify a test observation based on which side of the 

maximal margin hyperplane it lies

 Three training observations are equidistant from the 

maximal margin which are known as support vectors

 The maximal margin hyperplane does not depends on all 

other training points
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1. Maximal Margin Classifier

 The maximal margin hyperplane can be obtained via the constrained 

optimization problem

max
𝛽0,𝛽1,…,𝛽𝑝

𝑀

subject to σ𝑗=1
𝑝

𝛽𝑗
2 = 1, 

𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑝𝑥𝑖𝑝) ≥ 𝑀

for all 𝑖 = 1,… , 𝑛

 The first constraint means that the perpendicular distance from the 𝑖th observation 

to the hyperplane is given by 𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑝𝑥𝑖𝑝)

 The second one guarantees that each observation will be on the correct side of the 

hyperplane with some cushion, provided that 𝑀 is positive
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Non-separable Data

 The data below are not separable by a linear boundary

 This is often the case, unless 𝑛 < 𝑝

10



Noisy Data

 Sometimes the data are separable, but noisy. This can lead to a poor solution 

for the maximal-margin classifier

 The support vector classifier maximizes a soft margin
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2. Support Vector Classifier (SVC)

 In this case, we might be willing to consider a soft margin classifier that 

does not perfectly separate the two classes, but

 Greater robustness to individual observations, and

 Better classification of most of the training observations
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2. Support Vector Classifier (SVC)

 The hyperplane is chosen to correctly separate most of the training 

observations into the two classes, but may misclassify a few observations via

max
𝛽0,𝛽1,…,𝛽𝑝,𝜖0,𝜖1,…,𝜖𝑛

𝑀

subject to σ𝑗=1
𝑝

𝛽𝑗
2 = 1, 

𝑦𝑖 𝛽0 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑝𝑥𝑖𝑝 ≥ 𝑀 1 − 𝜖𝑖 ,

𝜖𝑖 ≥ 0,σ𝑖=1
𝑛 𝜖𝑖 ≤ 𝑐𝑜𝑛𝑠𝑡, for all 𝑖 = 1,… , 𝑛

 𝜖1, … , 𝜖𝑛 are slack variables that allow individual observations to be on the wrong 

side of the margin or the hyperplane

 𝜖𝑖 = 0 means observation is on the correct side of the margin, 𝜖𝑖 > 0 means observation 

is on the wrong side of the margin. 𝜖𝑖 > 1 means on the wrong side of the hyperplane
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Const is a regularization parameter

 Const as a budget for the amount that 

the margin can be violated

 If 𝑐𝑜𝑛𝑠𝑡 = 0, it is maximal margin 

hyperplane

 For 𝑐𝑜𝑛𝑠𝑡 > 0 no more than 𝑐𝑜𝑛𝑠𝑡
observations can be on the wrong side of 

the hyperplane

 𝑐𝑜𝑛𝑠𝑡 is small, we seek narrow margins 

that are rarely violated and vice versa

 Observations that lie directly on the 

margin, or on the wrong side of the margin 

for their class, are known as support 

vectors

14



Computing the Support Vector Classifier 

max
𝛽0,𝛽, 𝛽 =1,𝜖0,𝜖1,…,𝜖𝑛

𝑀

𝑦𝑖 𝑥𝑖
𝑇𝛽 + 𝛽0 ≥ 𝑀 1 − 𝜖𝑖 ,

𝜖𝑖 ≥ 0,σ𝑖=1
𝑛 𝜖𝑖 ≤ 𝑐𝑜𝑛𝑠𝑡, for all 𝑖 = 1,… , 𝑛

Is equivalent to 

m𝑎𝑥
𝛽0,𝛽,𝜖0,𝜖1,…,𝜖𝑛

𝑀

1

|𝛽|
𝑦𝑖 𝑥𝑖

𝑇𝛽 + 𝛽0 ≥ 𝑀 1 − 𝜖𝑖 ,

𝜖𝑖 ≥ 0,σ𝑖=1
𝑛 𝜖𝑖 ≤ 𝑐𝑜𝑛𝑠𝑡, for all 𝑖 = 1,… , 𝑛

Let 𝑀 = Τ1 |𝛽|

m𝑖𝑛
𝛽0,𝛽,𝜖0,𝜖1,…,𝜖𝑛

|𝛽|

𝑦𝑖 𝑥𝑖
𝑇𝛽 + 𝛽0 ≥ 1 − 𝜖𝑖 ,

𝜖𝑖 ≥ 0,σ𝑖=1
𝑛 𝜖𝑖 ≤ 𝑐𝑜𝑛𝑠𝑡, for all 𝑖 = 1,… , 𝑛15



Computing the Support Vector Classifier 

 σ𝑖=1
𝑛 𝜖𝑖 ≤ 𝑐𝑜𝑛𝑠𝑡
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Computing the Maximal Margin Classifier (Assume 𝜖𝑖 = 0)

 The Lagrange (primal) problem is (suitable for small 𝑝) to minimizing

𝐿𝑃 =
1

2
|𝛽|2

Subject to 𝑦𝑖 𝑥𝑖
𝑇𝛽 + 𝛽0 ≥ 1

𝑝 + 1 variables, 𝑛 constraints

 The Lagrangian (dual) problem is (suitable for small 𝑛, can use the kernel trick) 

to maximizing

𝐿𝐷 =෍

𝑖=1

𝑛

𝛼𝑖 −
1

2
෍

𝑖=1

𝑛

෍

𝑖′=1

𝑛

𝛼𝑖𝛼𝑖′ 𝑦𝑖𝑦𝑖′𝑥𝑖
𝑇𝑥𝑖

′

Subject to 0 ≤ 𝛼𝑖 and σ𝑖=1
𝑛 𝛼𝑖𝑦𝑖 = 0

𝑛 variables, 𝑛 + 1 constraints
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Computing the Support Vector Classifier (Assume 𝜖𝑖 ≠ 0)

 The Lagrange (primal) problem is to minimizing (𝐶 is inverse proportional to 𝑐𝑜𝑛𝑠𝑡)

𝐿𝑃 =
1

2
|𝛽|2 + 𝐶෍

𝑖=1

𝑛

𝜖𝑖

Subject to 𝜖𝑖 ≥ 0, 𝑦𝑖 𝑥𝑖
𝑇𝛽 + 𝛽0 ≥ 1 − 𝜖𝑖

𝑝 + 1 + 𝑛 variables, 2𝑛 constraints

 The Lagrangian (dual) problem is to maximizing

𝐿𝐷 =෍

𝑖=1

𝑛

𝛼𝑖 −
1

2
෍

𝑖=1

𝑛

෍

𝑖′=1

𝑛

𝛼𝑖𝛼𝑖′ 𝑦𝑖𝑦𝑖′𝑥𝑖
𝑇𝑥𝑖

′

Subject to 0 ≤ 𝛼𝑖≤ 𝐶 and σ𝑖=1
𝑛 𝛼𝑖𝑦𝑖 = 0

𝑛 variables, 2𝑛 + 1 constraints

 It is noted that the solution has the form መ𝛽 = σ𝑖=1
𝑛 ො𝛼𝑖 𝑦𝑖𝑥𝑖
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Linear boundary can fail

 Sometimes a linear boundary simply won’t work, no matter what value of const

 The example below is such a case. What to do?
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Feature Expansion

 Enlarge the space of features by including transformations; e.g. 

𝑋1
2, 𝑋1

3, 𝑋1𝑋2, 𝑋1𝑋2
3, … . Hence go from a 𝑝-dimensional space to a larger 

dimensional space

 Fit a support-vector classifier in the enlarged space

 This results in non-linear decision boundaries in the original space

 Example: Suppose we use (𝑋1, 𝑋2, 𝑋1
2, 𝑋2

2, 𝑋1𝑋2) instead of just (𝑋1, 𝑋2). Then 

the decision boundary would be of the form

𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋1
2 + 𝛽4𝑋2

2 + 𝛽5𝑋1𝑋2 = 0

 This leads to nonlinear decision boundaries in the original space (quadratic conic sections)
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Feature Expansion - Cubic Polynomials

 Here we use a basis expansion of cubic polynomials. From 2 variables to 9 

 The support-vector classifier in the enlarged space solves the problem in the 

lower-dimensional space
𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋1

2 + 𝛽4𝑋2
2 + 𝛽5𝑋1𝑋2 + 𝛽6𝑋1

3 + 𝛽7𝑋2
3 + 𝛽8𝑋1𝑋2

2 + 𝛽9𝑋1
2𝑋2 = 0
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Nonlinearities and Kernels

1. Polynomials (especially high-dimensional ones) get wild rather fast

2. There is a more elegant and controlled way to introduce nonlinearities in 

support-vector classifiers — through the use of kernels

 Main idea: feature mapping to a high dimensional space

𝑥 → Φ 𝑥 = 𝜑1 𝑥 , 𝜑2 𝑥 , 𝜑3 𝑥 ,… ,Φ 𝑥 𝑇Φ 𝑢 = 𝐾(𝑥, 𝑢)

 Kernel Trick: We do not really need to know Φ 𝑥 . Instead, we work on original space 

using the Kernel

 A kernel is a function that quantifies the similarity of two observations

 Recall the role of inner products in statistical learning
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Inner products and support vectors

 Many problems involve the following inner product

𝑥𝑖 , 𝑥𝑖′ =෍

𝑗=1

𝑝

𝑥𝑖𝑗𝑥𝑖′𝑗

 The linear support vector classifier can be represented as 

𝑓 𝑥 = 𝛽0 +෍

𝑖=1

𝑛

𝛼𝑖𝑦𝑖 𝑥, 𝑥𝑖

 To estimate the parameters 𝛼1, … , 𝛼𝑛 and 𝛽0, all we need are the 
𝑛
2

inner 

products 𝑥𝑖 , 𝑥𝑖′ between all pairs of training observations

 It turns out that most of the ො𝛼𝑖 can be zero except for the support vectors:

𝑓 𝑥 = 𝛽0 +෍

𝑖∈𝑆

ො𝛼𝑖𝑦𝑖 𝑥, 𝑥𝑖

𝑆 is the support set of indices 𝑖 such that ො𝛼𝑖 > 0
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3. Kernels and Support Vector Machines

 The support vector machine (SVM) is an 

extension of the support vector classifier 

that results from enlarging the feature 

space in a specific way, using kernels

 Consider the second degree mapping

Φ 𝑥 = Φ

2𝑥1𝑥2
𝑥1
2

𝑥2
2

Φ 𝑎 𝑇Φ 𝑏 =

2𝑎1𝑎2
𝑎1
2

𝑎2
2

𝑇
2𝑏1𝑏2
𝑏1
2

𝑏2
2

= (𝑎1𝑏1 + 𝑎2𝑏2)
2=

𝑎1
𝑎2

𝑇 𝑏1
𝑏2

2

= (𝑎𝑇𝑏)2
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3. Kernels and Support Vector Machines

 If we can compute inner-products between observations, we can fit a SV classifier. 

The Support Vector Machines is an extension of SVC (linear kernel) using kernels 

In fact, SVC is a SVM with linear kernel

𝐾 𝑥𝑖 , 𝑥𝑖′ =෍

𝑗=1

𝑝

𝑥𝑖𝑗𝑥𝑖′𝑗

 Some special kernel functions are useful. E.g. the polynomial kernel

𝐾 𝑥𝑖 , 𝑥𝑖′ = (1 + σ𝑗=1
𝑝

𝑥𝑖𝑗𝑥𝑖′𝑗)
𝑑 (Add constant and variable itself)

computes the inner-products needed for 𝑑 dimensional polynomials

 The solution now has the form

𝑓 𝑥 = 𝛽0 +෍

𝑖∈𝑆

ො𝛼𝑖𝑦𝑖𝐾 𝑥, 𝑥𝑖
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Radial Basis Kernel

 Controls variance by squashing down most 

dimensions severely

𝐾 𝑥, 𝑥𝑖 = exp(−𝛾෍

𝑗=1

𝑝

(𝑥𝑖𝑗 − 𝑥𝑖′𝑗)
2)

𝑓 𝑥 = 𝛽0 +෍

𝑖∈𝑆

ො𝛼𝑖𝑦𝑖𝐾 𝑥, 𝑥𝑖

 𝛾 is also a regularization parameter (You 

should reduce it if overfitting)

 The feature space is implicit and infinite-

dimensional (By Mercer’s theorem, exact Φ is 

intractable)
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Example: Heart Data

 ROC curve is obtained by changing the threshold 0 to threshold 𝑡 in መ𝑓 𝑋 ≥ 𝑡, 
and recording false positive and true positive rates as 𝑡 varies. Here we see 

ROC curves on training data
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Example continued: Heart Test Data

 ROC curves on testing data
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SVMs: more than 2 classes?

 The SVM as defined works for 𝐾 = 2 classes. What do we do if we have 𝐾 > 2
classes?

 OVA (One versus All or OVR): Fit 𝐾 different 2-class SVM classifiers መ𝑓(𝑥), 𝑘 = 1, . . . , 𝐾; 

each class versus the rest. Classify 𝑥∗ to the class for which መ𝑓(𝑥∗), is largest

 OVO (One versus One): Fit all 
𝐾
2

pairwise classifiers መ𝑓𝑘𝑙(𝑥). Classify 𝑥∗ to the class that 

wins the most pairwise competitions

 Which to choose? If 𝐾 is not too large, use OVO
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Support Vector versus Logistic Regression?

 With 𝑓 𝑋 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+
𝛽𝑝𝑋𝑝, we can rephrase support-vector 

classifier optimization as (ESL exercise 12.1)

min
𝛽0,𝛽1,…,𝛽𝑝

{෍

𝑖=1

𝑛

max 0,1 − 𝑦𝑖𝑓 𝑥𝑖 + λ෍

𝑗=1

𝑝

𝛽𝑗
2}

 When λ is large then 𝛽 is small, more violations to 

the margin are tolerated. It is proportional to 

𝑐𝑜𝑛𝑠𝑡

 This has the form loss plus penalty. The loss is 

known as the hinge loss

 Very similar to “loss” in logistic regression 

(negative log-likelihood)
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Support Vector versus Logistic Regression?

 The loss function shown above is exactly zero for observations for which 

𝑦𝑖(𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝) ≥ 1

 The loss function for logistic regression shown in Figure is not exactly zero anywhere. 

But it is very small for observations that are far from the decision boundary 

 When classes are (nearly) separable, SVC does better than LR. So does LDA

 When not, LR (with ridge penalty) and SVC very similar

 If you wish to estimate probabilities, LR is the choice

 For nonlinear boundaries, kernel SVMs are popular. Can use kernels with LR 

and LDA as well, but computations are more expensive

 We could also just as well perform logistic regression or many of the other 

classification methods seen in this book using non-linear kernels!
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SGD classifier

 Stochastic Gradient Descent (SGD) is a simple yet very efficient approach to 

fitting linear classifiers and regressors under convex loss functions such as 

(linear) Support Vector Machines and Logistic Regression

 Even though SGD has been around in the machine learning community for a long time, it 

has received a considerable amount of attention just recently in large-scale learning

 SGD is sensitive to feature scaling

 Kernel Approximation can be used with SGD

 For large-scaled problem, try to use SGDClassifier with hinge loss
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Computations

 Support Vector Machine algorithms are not scale invariant, so it is highly 

recommended to scale your data

 For the linear case, the algorithm used in LinearSVC by the liblinear implementation. Note 

that LinearSVC does not accept parameter kernel, as this is assumed to be linear 

 For nonlinear case, SVC (relies on libsvm) and NuSVC are similar methods, but accept 

slightly different sets of parameters 

 liblinear and libsvm are efficient library developed by Chih-Jen Lin

 SVM can also estimating the probability

 𝐶 is 1 by default and it’s a reasonable default choice. If you have a lot of noisy 

observations you should decrease it: decreasing 𝐶 corresponds to more 

regularization
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SVM

 The key features of SVMs are the use of kernels, the absence of local minima, 

the sparseness of the solution and the capacity control obtained by optimizing 

the margin

 SVM can also be extended to regression, density estimation and novelty 

detection problem

 Support vector regression instead seeks coefficients that minimize a different type of loss, 

where only residuals larger in absolute value than some positive constant contribute to the 

loss function
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Appendix
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Reference

 https://www.csie.ntu.edu.tw/~htlin/mooc/

 https://cs229.stanford.edu/notes2021fall/cs229-notes3.pdf

 https://cs229.stanford.edu/notes2022fall/main_notes.pdf chapter 5 and 6

 https://scikit-learn.org/stable/modules/svm.html
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Statistical Modeling Y ∼ X:

 𝑌 continuous, 𝑋 continuous: Regression Analysis

 𝑌 discrete, 𝑋 continuous:

 𝑋 is Gaussian: Linear Discriminant Analysis

 𝑋 is non-Gaussian: Logistic Regression

 𝑌 discrete, 𝑋 discrete: Discriminant Correspondent Analysis

 𝑌 continuous, 𝑋 discrete: ANOVA
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Perceptron: I only need to know the hyperplane!

Why bother a model?

 Perceptron: On-Line learning Classification

 The hyperplane is sequentially updated by the training set. Calculate the actual output and 

then update the weight whose increment is proportional to the difference of the actual 

output and the desired output

 Given an initial 𝑤, for each training pair (𝑥𝑖 , 𝑦𝑖) where 1 ≤ 𝑖 ≤ 𝑛, do the two 

steps:

𝑜𝑖 = 𝑓(𝑤𝑇(𝑡)𝑥𝑖) (the decision rule)

𝑤 𝑡 + 1 = 𝑤 𝑡 + 𝛼(𝑜𝑖 − 𝑦𝑖)𝑥𝑖
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From Perceptron to SVM

 Introduce the concept of Margin → a unique solution

 Introduce the slack variables → soft margin

 Introduce Kernel method → non-linear feature mapping
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Common kernels

 Linear kernel

 Pros: safe, fast (QP solvers), explainable (by 𝑤 and SVs )

 Cons: restricted (not always separable)

 A basic tool

 Polynomial kernel

 Pros: less restricted than linear, strong physical control by knowing the degree 

 Cons: numerical difficulty for large degree 

 Perhaps small degree only

 Gaussian kernel

 Pros: more powerful than linear and poly ones, bounded (less numerical difficulty than 

Poly one), only one parameter to be selected

 Cons: mysterious (no 𝑤), slower than linear, overfitting problem

 Popular but be used carefully
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